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Refraction at a Curved Dielectric Interface:
Geometrical Optics Solution

SHUNG-WU LEE, reLLOW, iEeg, MYSORE S, SHESHADRI, VAHRAZ JAMNEJAD, MEMBER, IEEE, AND
RAJ MITTRA, FELLOW, IEEE

Abstract —The transmission of a spherical or plane wave through an
arbitrarily curved dielectric interface is solved by the geometrical optics
theory. The transmitted field is proportional to the product of the conven-
tional FresnePs transmission coefficient and a divergence factor (DF),
which describes the cross-sectional variation (convergence or divergence)
of a ray pencil as the latter propagates in the transmitted region. The factor
DF depends on the incident wavefront, the curvatures of the interface, and
the relative indices of the two media. We give explicit matrix formulas for
cale-lating DF, illustrate its physical significance via examples.

I. INTRODUCTION

"IE REFRACTION at a dielectric interface is of
'undamental importance in clectromagnetic theory. If
the iaterface is arbitrarily curved, the only available solu-
tion is the one derived by the geometrical optics theory
(GO). Such a solution consists of two main ingredients: the
well-known Fresnel formulas for the transmission and re-
flection coefficients (due to A. J. Fresnel in 1823); and a
so-called “divergence factor (DF).” Surprisingly, the solu-
tion of DF was derived as early as 1915 by Gullstrand [1],
but its ap: lication was not widely recognized in the electro-
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magnetic /optical community until very recently. In 1972,
Deschamps (2], [3] rederived Gullstrand’s result by using
“curvature matrices” for describing curved surfaces /wave-
fronts, thus resulting in greater clarity and simpler compu-
tations. ; ‘

In this paper, we supplement Deschamps’ results by
giving explicit formulas for calculating various curvature
matrices and by illustrating the physical significance of DF
via analytical and numerical examples. Another motivation
for the present work is to compare our solution with the
one described by Snyder and Love [4] for the same prob-
lem. It is shown that these two solutions are not in agree-
ment.

II. FINAL SOLUTION FOR THE REFRACTED FIELDS

We begin with a statement of the problem. Two infinite
dielectric media with refraction indices n, and »n, are
separated by a curved interface £ (Fig. 1), which is de-
scribed by

2:iz=f(x,y). (2.1
The origin of the (x, y, z) coordinates is at the source point
0 in medium 1. The source emits a spherical wave, whose
electric field at an observation point r =(r, 8, ¢) is given by
[for exp(jw?) time convention]
—jkyr

E'(r)=5——[0P(0,6)+30(0.9)]  (22)

0018-9480 /82 /0100-0012500.75 ©1982 IEEE
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Fig. 1. Refraction at a curved dieléctric interface .

where k,=2n/\,=n,w/c, and (r,0,$) are the spherical
coordinates with origin at 0. The problem at hand is to find
the transmitted field E* at a typical point 2 in medium 2,
and the reflected field E” at a typical point 3 in medium 1.

We attack the problem by the GO [2], [3]. Referring to
Fig. 1, let us concentrate on a typical incident ray in the
direction of Z, emanating from the source at 0. The “out-
ward” normal to surface S at the refraction point 1 is N.
The plane defined by the ray 01 and N is the plane of
incidence. With respect to this plane, we resolve the inci-
dent field E' into two components: perpendicular compo-
nent E’, and parallel component E|. We introduce a scalar
u' such that L

X Ei, for perpendicular polarization (2.3)
u'= 4 )
Hj, for parallel polarization.

Similar decompositions and notations apply to E” 'and E".
Then, the final solution derived from GO has the following
form:

u'(2)=(DF),Te 7*2*4/(1)
u’(3)=(DF);Re /*ui(1)

(2.4a)
(2.4b)

where b and ¢ are the distances shown in Fig.v 1 and the
other factors in (2.4) are explained below. T and R are the

well-known Fresriel’s transmission and reflection coeffi--

cients (for a planar interface) given by
2 1-Y

R=—+%

1+Y (2.5)

where

{n(cos a, /cosa,),

n~Ycosa, /cosa;),

for perpendicular polarization

for parallel polarization

n={(n, /n,)=relative refraction index.

The incident angle @, and transmitted angle a, are related

13

by the Snell’s law

s l.
sina, = —sing; .
n .

(2.6)
For n<1, a critical incident angle a, exists, where

itn<l. 2.7)

If a,>a,, a, defined in (2.6) becomes complex, and the-
simple ray picture shown in Fig. 1 is lost. It is.not im-
mediately clear how the present: GO solution must be
modified. Therefore, in this paper, we exclude the case
«,>a, when n <1, (Discussion on this case can be found
in [4] and {7].) The factor (DF), in (2.4a) is the so-called
“divergence factor” [3] of the transmitted ray. pencil at
point 2 in reference to point 1. It is given by

1 . 1.
1+(6/Ry) 1+(b/Ry)

Here (R,;, Ry,) are the two principal radii of curvature of
the transmitted wavefront passing through point 1. The

sina, = n,

(DF), =

(2.8)

sign convention of R, (or Ry) is as follows: R, is

positive if the transmitted rays in the corresponding nor-
mal section are divergent, and R, is negative if the trans-
mitted rays are convergent. The square roots in (2.8) take
cither positive real or negative imaginary value. Thus,
(DF), is positive real (no focus between points 1 and 2 on
the transmitted ray), positive imaginary (one focus between
1 and 2), or negative real (two foci between:1 and 2). The
factor (DF), in (2.4b) is the divergence factor of the
reflected ray pencil at point 3 in reference to point 1. It is
given by '

(DF), ‘ 1

‘/1 +(c/Ry) \/1 + (C/Raz;)
The determination of the four principal radii of curvature
(R,), Ry, R5, Ryy) is the key to the present problem. In
Section 111, we give an explicit, step-by-step description of
their determination. :

In summary, for the refraction problem in Fig. 1, the
final solutions for the fields of the transmitted and re-
flected rays are given in (2:4). This solution is based on
GO. It is valid for high frequencies, and for all cases,
except when total reflection occurs (n<1 and a; > a,).

I11.

(2.9)

CALCULATION OF CURVATURES OF REFRACTED
WAVEFRONTS

For an arbitrary interface £ and an arbitrary incident
ray 01 (Fig. 1), the calculation of the four radii of curva-
tures (R,,, Ry, R5, Ry,) is not a simple task. In this
section, we present a systematic and explicit procedure for
doing this calculation. ’ '

A. Coordinate Systems at Point-1

Consider a ray leaving the source at 0 in the direction
(8, ¢), which intersects the surface = described in (2.1) at -
point 1. The distance a is determined from the nonlinear
equation

acosf= f(x=asinfcos$, y=asinfsing). (3.1)
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The unit vector in the direction of the incident ray is

2,=2%sinfcos¢ + psinfsing + Zcosd. (3.2)
The unit normal N of surface X at point 1 is
A~ ] . .
N=x(=fr—fy+12) (3.3)

where A=+(1+ f2+ £5)'/% and f,, for example, is the
partial derivative of f(x, y) with respect to x. By defining A
positive, we have chosen N in the forward direction with
respect to the incident ray. Vectors £, and N define the
plane of incidence. At point 1, we introduce four orthonor-
mal base vectors: (X, §;,£,) for the incident ray 01;
(%2, 5, £,) for the transmitted ray 12; (£;, 5, 23) for the
reflected ray 13; (4, 6, N) for the surface Z. We choose

(3.4)

which is equal to a unit vector normal to the plane of
incidence. Then it follows

a=0XN forn=1,2,3. (3.5)

The incident, transmitted, and reflected rays are respec-
tively in the directions

)?1:)32:)?3:6:N><z”1

xnzyrzxzn’

2, =1dsine, + Ncos g, (3.6a)
2, =dsina, + Ncos a, (3.6b)
2,=1fsina, — Ncosa, (3.6¢c)

where
a,<m/2. (3.6d)

Note that, because of the particular choice in (3.4), both «;
and a, are always positive, and have values in (0, 7/2).

sina, =n"'sing,, 0<a,.

B. Curvature Matrix of Surface =
At point 1 on surface =, the following two vectors lie in

the tangent plane of the surface:
r,=%+f2 r,=y+ 2

where (x, y, z) are evaluated at point 1. With respect to the
base vectors (r, 1), the curvature matrix of 2 is given by

(5]

(3.7)

1 eG,— fiF, fE —eF

QE:Az hG —gFy &E —~fiF (38)

where

A=+(1+ 24 72)

E, =1+ f?

Fr=11

G1:1+fy2

e =—AT,

fi=—a7! xy

gIZ_A_Iyy'

All (x, y, z)'s are evaluated at point 1. Now we transfer the

curvature matrix with respect to (ry,,r,) to that with
respect to (4, ), namely

Os=4"'054 (3.9)
where
| SORY 7 R 5
A:[ Ix A 1x A}.
ryory 0

It may be shown [5] that a principal radius calculated from
(3.8) or (3.9) has a positive (negative) sign if the normal
section of the surface bends away from (toward) the nor-
mal N. For example, if = is a sphere with radius p and the
normal N points away from the sphere center, we have

Qs =0s=p 1 (3.10)
where / is the identity matrix. We note that the present
sign convention for the surface curvature is the same as
that used in [2}, but opposite to that in [3], [5].

C. Curvature Matrices of Wavefronts

The incident wavefront passing through point 1 is
spherical with a radius a. Thus, its curvature matrix Q,
with respect to base vectors (£, 7,), or any other orthonor-
mal base vectors, is

0,=a"'I. (3.11)

The curvature matrices of the transmitted and reflected
wavefronts passing through 1 are expressed with respect to
base vectors (%£,, 7). and (£, f), respectively. They are
denoted by Q, and Q,. The solution of Q, is found from
the following matrix equation [2]:

nBiQ,B, = B{Q B, +(ncosa, —cosa,)Qs (3.12)

where
X0 X0
B,,:{A"A “n A]:[cosan 0}’ n=12.
Yoh YU 0 1

The solution of Q; is found from the following matrix
equation:

B 333:BlTQ1Bl“2(COS‘X1)Q2 (3.13)
where
_|Ed %y 0 —cose; O
B=s 0 el
3 U 3 U 0 1

D. Principal Radii of Curvature of Refracted Wavefronts

Once matrices Q, and @, are determined from (3.12)
and (3.13), they may be diagonalized in a standard manner
to find their eigenvectors {principal directions of the wave-
front) and their eigenvalues (principal curvatures) [S]. In
particular, the principal radii of the transmitted wavefront
(R, Ry,) are the roots of the following quadratic equa-
tion:

1 1

-— ~ —(trace Q,)+det Q, =0.

2R (3.14)
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If Q, in (3.14) is replaced by Q;, the two roots are the radii
(R3;; R;,) of the reflected wavefront.

~ IV. SpPECIAL CASE: SPHERICAL INTERFACE

To illustrate the results obtained in the previous two
sections, let us concentrate on a special case in which the
interface = is spherical with radius |p|. Following our sign
convention, the radius of curvature of £ is

if 2 is concave when viewed

+lel, |
p= from the source
—1lpl if 2 is convex.

4.1)

Without loss of generality, we assume that the incident ray
from the source at point 0 is in the direction (6, ¢ =0). The
plane of incidence is then the x—z plane. Making use of the
formulas in Section III, we find that the principal radii of
the transmitted and reﬂected wavefronts passing through
point 1 are

R, =(ncos? az)[%cosz a, + %(ncosoc2 —cosa,)]

(4.2a)
—1
R22=[nia+n—(ncosa2—cosal)] (4.2b)
1 2 ]! [1 2cose; 7!
R31_[Z pcosa,} R”_[E' P ] )

(4.3)

It can be shown that R,, and R, are the radii of curvature
of the normal sections in the x~z plane (plane of inci-
dence), whereas R,, and R;, are those in the orthogonal
directions. Since in general R,, # R,, and R;, # R;,, the
refracted and reflected pencils are astigmatic.

A. Normal Incidence
=0, (4.2) and (4.3) become

1 n—1]7"
R21:R22:”[;+ P ]

: 1 2]
R31:R32%[;“;] .
Thus, for normal incidence, both refracted pencils have
spherical wavefronts (no longer astigmatic). The relatlon in
(4.4) may be rearranged to read
no_1lyn-l

Ry a P

For a,

(4.4)

(4.5)

which is the well-known lens equation in optics. (See for
example [6, eq. (40-14), p. 678].) Note the corresponding
notations used in [6] and here: n—>1, W' > n, s—>a, '~
(—R,,), and R—(—p).) The divergent incident pencil
from a point source is converted into a convergent trans-
mitted pencil in medium 2 when R,, <<0. This occurs when
0 ,
a>(£-)>o0. (4.6)

15

Fig. 2. Refraction at a concave spherical dielectric interface of a nor-
mally incident plane wave.

If p>0 (concave ‘dielectric interface), this is possible if
n=(n,/n;)<1.If p <0 (convex dielectric 1nterface), this is
possible if n>1.

B. Comparison with Snyder and Love’s Result

In a recent article [4], Snyder and Love consider the
problem sketched in Fig. 1 for an incident plane wave
(source distance a — co in Fig. 1). Their final result is not
in complete agreement with ours. To show this disagree-
ment, let us concentrate on a simple case (Fig. 2): a
concave, spherical, dielectric interface is illuminated by an
incident plane wave which is given by

Ei(x,y,z)=z2e77*, (4.7)
The problem is to find the high-frequency solution of the
refracted fields along the y-axis. Based oni GO, our solution:
is given in (2.4), (2.5), (2.8), (2.9), and (4.4) with a - oo.
Using the coordinate system in Fig. 2, the transmltted and
reflected fields are

EY(0, y,0)=1 — k>0
H_(n 1)(_}1) 1+n
n 0
(4.8a)
and

1 1—n .

E(0, y,0)=2 ek y<0.
©.7.0) [1~(2|y|/p) =
' (4.8b)

The factors in [ ] in (4.8) are divergence factérs. The
intensity or power density of the incident field on the
central ray (along x = z =0) is given by
['=Re{p-(E'X H*)}=(n,/120m),  W/m
(4.9)

which is independent of y since the incident field is a plane
wave. The intensity of the refracted field on the central ray
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does vary with y, namely

Itf,,y):”(u%n)z H(n—ll)(z) -
’ (4.10a)
P b oo @

At the focal point of the reflected pencil y=—p/2 in
medium 1, the intensity I” in (4.10b) predicted by the
present GO becomes infinite as expected. For the same
problem sketched in Fig. 2, Snyder and Love’s solution is
given in [4, eq. (29-34)]. For the case of normal incidence
(a,=0) and central ray (x =2z=0), Snyder and Love’s
solution reads

2
E;(0,,0)=272—,  p»y>0  (4.1la)
E§L(0,y,0)=z‘112e1"1y, y<0  (4.11b)

which should be compared with our solution in (4.8). We
note that i) divergence factors (DF), and (DF), are missing
in (4.11), and ii) the propagation phase factor exp(— jk, )
is missing in (4.11a). Thus, we believe that (4.11) is less
accurate. Furthermore, for each incident ray (fixed a,),
Snyder and Love define a “power transmission coefficient
Ty by [4, eq. (350)]

(4.12)

As may be seen from (4.10b), the intensity /" is, in general,
a function of position (x, y,z), because of the
divergence /convergence of the reflected ray pencil. Then,
T, when calculated correctly is also a function of position,
and does not have the usual significance associated with
the “power transmission coefficient.”

V. NUMERICAL RESULTS AND DISCUSSIONS

For the refraction problem sketched in Fig. 1, the final
solution for the transmitted field #’ in medium 2 is given in
(2.4a), when the incident field is given in (2.2). In this
section, we present some numerical results for «’ for vari-
ous interfaces and source locations.

We consider three types of interfaces: the spherical
interface described by

(z/A)=1-[1-(x*+»?)/8]*  (5.1)
the paraboloidal interface described by
(z/A)=(x*+»%) /24 (5.2)

and the hyperboloidal interface described by

(z/N)=3[1+2(x*+y?)/R2]2 =1 (5.3)
where A, is the wavelength in medium 1 in which the
source is located. For easy comparison, we have chosen the

above interfaces such that they all have the same curvature
in the axial direction. The source is assumed to be y-
polarized. We calculate the transmitted field in the E-plane
(plane normal to x) and H-plane (plane normal to ). In
these two planes, the incident field is assumed to be

, ek [,
E (’):—r“{y*l

E-plane

5.4
H-plane. (54)

Thus, in the E-plane, the E-vector is parallel to the plane of
incidence; whereas in the H-plane, the E-vector is per-
pendicular. The observation point 2 is in medium 2 (Fig. 1)
with distance b — oo (far zone). We calculate the normal-
ized far field defined by

E'(2)
E(2)

(5.5)

_ | E-field when n, #n,
| E-field when n,=n, |’

Substitute (2.4a) and (5.4) into (5.5). Under the condition
b — o0, we have

(5.6)

Here a is the distance between the source and the interface
along the incident ray, and T is the Fresnel’s transmission
coefficient given in (2.5). The factor yR, R,, is the radius
of the Gaussian curvature. In presenting the numerical
results, we plot EN as a function of §, where 8 is the polar
angle of observation point 2 measured from a line parallel
to the z-axis and passing through the source points. The
relative index n=n, /n, is always set at 2 (transmission
into a denser medium).

ENN%T R21R22, b—>00.

A. Concave Spherical Interface

Figs. 3 and 4 show the E- and H-plane far-field pattern
EN as a function of §. Note that the field strengths
increase as the source moves closer to the interface (smaller
a) because EN is inversely proportional to a, according to
(5.5). The Gaussian curvature yR, R,, decreases with a,
but not enough to offset the factor (1/a) in (5.5). For
source 3, which is at the center of the spherical interface,
all of the incident rays are normal to the interface. It can
be shown that R, =R,, =a. Thus, EN calculated from
(5.5) is equal to T, which is 0.667 for the present case of
n=2. Of particular interest is the H-plane pattern of
source 1 shown in Fig. 4. Note the marked asymmetry in
the far-field pattern which is due to the asymmetry of the
surface with respect to source 1. Fig. 5 shows the variation
of the axial far field when the source is moved along and
parallel to the z-axis. It shows clearly the increase of the
field as the source moves closer to the interface.

B. Concave Hyperboloidal Interface (Fig. 6)

Note that the far-field pattern (due to source 4) has a dip
instead of a peak in the axial direction. This is in the
contrast to the situations in Figs. 3 and 4. There is another
fact worth mentioning. Because of the choice of the same
axial curvature for the above interfaces, the axial field is
the same for both interfaces when the source is at 2, 3, or 4.
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Fig. 4. Same as Fig. 3, except for H-plane pattern.

However, for source 1, which is displaced from the symme-
try axis, the normalized axial field EN(6 =0) increases
from 0.826 for the spherical surface to 0.954 for the hyper-
boloid. ) : ‘

C. Convex Interfaces

The H-plane far-field patterns for a convex sphere,
paraboloid and hyperboloid are shown in Fig. 7 for source
locations 5 and 6. The source locations 5 and 6 were
chosen based on (4.6). Source 5 produces a divergent axial
pencil in medium 2, whereas source 6 produces a conver-
gent axial pencil; the behavior in the nonaxial direction is
governed by the type of the interface. Thus, as may be seen
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from Fig. 7, the far field in the axial direction through the
spherical interface has a peak for source 6 and a dip for
source 5. This is also the case for the paraboloid. However,
this behavior is not observed in the hyperboloidal pattern.

. For all the convex interfaces, the variation of EN as a
function of @ in (5.5) is predominantly determined by the

radius of the Gaussian curvature, yR,, R, , and to a lesser
extent by T or a.

D. Ray Picture

The H -plane pattern due to source 6 for a4convex sphere
is given in Fig. 7. The corresponding ray picture is shown
in Fig. 8. We launch 6 rays at 4° apart in the upper half



18

[EEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 1, JANUARY 1982

6.0 T T T T
5.5 SPHERE
5.0

4.5

~— HYPERBOLOID

4.0
3.5

3.0
PARABOLOID
2.5
SPHERE

2.0

NORMALIZED E-FIELD, EN

1

L

H-PLANE PATTERN

SOURCE

] {

-40 -30

-2.0

-1.0

L
0.0 1.0 2.0 30 4.0 5.0

POLAR ANGLE , 8 (DEGREES)

Fig. 7. H-plane far-ficld pattern through convex interfaces.

oF

RAYS 4°

x/N
l‘ xxxx for Ry
0.25 x eee e for Rzz
x‘
x
x .
0 8 = 0 z/\
x
L3
-0.25 o
%
*

x = FOCAL POINT

Fig. 8. ' Ray picture and trace of foci of the transmitted rays which lie in the x -z plane, for the convex
spherical interface with source at (®). The distance from the interface to a cross along a given ray

represents R

x—z plane (x>>0). The transmitted rays are first conver-
gent, and after crossing the caustic surface, become diver-
gent. The incident rays in the upper half x—z plane within
a 20° angle give rise to transmitted rays in the lower x—2z
plane (x <0) within a 13.5° angle. There are two caustic
surfaces associated with the transmitted rays. The intersec-
tions of the caustic surfaces and the x—z plane are indi-
cated by crosses and dots. Similar ray pictures can be
drawn for the other cases also. ‘

VL

For the refraction problem sketched in Fig. 1, the final
geometrical-optics solutions for the transmitted field and
the reflected field are given in (2.4). They are applicable
under rather general conditions, namely, the dielectric in-

CONCLUSION

terface described in (2.1) is arbitrary, and the incident field
in (2.2) from a point source is arbitrary. A major step in
calculating these solutions is the evaluation of the diver-
gence factors in (2.8) and (2.9), which involves the matrix
operation described by (3.12) and (3.13). Strictly speaking,
the present solution is valid in the high-frequency limit
w — 00; however, practical experience has shown that solu-
tions of the present type are reasonably accurate as long as
the radii of curvature of the dielectric interface are in the
order of a wavelength or more.
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