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Refraction at a Curved Dielectric Interface:
Geometrical Optics Solution

SHUNG-WU LEE, FELLOW, IEEE, MYSORE S. SHESHADRI, VAHRAZ JAMNEJAD, MEMBER, IEEE, AND
RAJ MITTRA, FELLOW, IEEE

A bstruct —The transmission of a spherical or plane wave through an

arbitrarily curved dielectric interface is solved by tbe geometrical optics

theory. The transmitted field is proportional to the product of the conven-

tional Fresnel’s transmission coefficient and a divergence factor (DF),

which describes the cross-sectional variation (convergence or divergence)

of a ray pencil as the latter propagates in the transmitted region. The factor

DF depends on the incident wavefront, the curvatures of the interface, and

the relative indices of the two media. We give expficit matrix fornnrfas for

calr-~lating DF, illustrate its physical significance via examples.

I. INTRODUCTION

‘~ “ iE REFRACTION at a dielectric interface is of

., undamental importance in electromagnetic theory. If

th. ,derface is arbitrarily curved, the only available solu-

tion is the one derived by the geometrical optics theory

(GO). Such a solution consists of two main ingredients: the

well-known Fresnel formulas for the transmission and re-

flection coefficients (due to A. J. Fresnel in 1823); and a

so-called “divergence factor (DF).” Surprisingly, the solu-

tion of DF was derived as early as 1915 by Gullstrand [1],

but its ap lication was not widely recognized in the electro-
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NOOO19-79-C-0281.
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V. Jamnejad was with the Department of Electrical Engineering, Uni-
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magnetic/optical community until very recently. In 1972,

Deschamps [2], [3] rederived Gullstrand’s result by using

“curvature matrices” for describing curved surfaces/wave-

fronts, thus resulting in greater clarity and simpler compu-

tations.

In this paper, we supplement Deschamps’ results by

giving explicit formulas for calculating various curvature

matrices and by illustrating the physical significance of DF

via analytical and numerical examples. Another motivation

for the present work is to compare our solution with the

one described by Snyder and Love [4] for the same prob-

lem. It is shown that these two solutions are not in agree-

ment.

11. FINAL SOLUTION FOR THE REFRACTED FIELDS

We begin with a statement of the problem. Two infinite

dielectric media with refraction indices n ~ and n ~ are

separated by a curved interface Z (Fig. 1), which is de-

scribed by

Z:.z=f(x, y). (2.1)

The origin of the (x, y, z) coordinates is at the source point

O in medium 1. The source emits a spherical wave, whose

electric field at an observation point r =( r, 8, @s)is given by

[for exp(j~l) time convention]

~i(r)– e-~’r
[6P(d,@+~Q(ff,c#I)] (2.2)

001 8-9480/’82/0100-0012$00 .75 01982 IEEE
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Fig. 1. Refraction at a curved dielectric interface Z

where k, =27r/A, = n,ti/c, and (r, 6, O) are the spherical

coordinates with orig~ at O. The problem at hand ii to find

the transmitted field E( at a typical point 2 in medium 2,

and the reflected field E’ at a typical point 3 in medium 1.

We attack the problem by the GO [2], [3]. Referring to

Fig. 1, let us concentrate on a typical incident ray in the

direction of El emanating from the source at O. The “ou~-

ward” normal to surface 2 at the refraction point 1 is N.

The plane defined by the ray 01 and i$ is the plane of

incidence. With respect to this plane, we resolve the inci-

dent field Ei into two components: perpendicular compo-

nent E~ and parallel component E~l. We introduce a scalar

Ui such that

{

E!, for perpendicular polarization
~i =

H;, for parallel polarization.
(2.3)

Similar decompositions and notations apply to E’ ‘and E’.

Then, the final solution derived from GO has the following

form:

uf(2) = (DF)zTe–~~’~ui(l) (2,4a)

u’(3) = (DF)~Re–~~lcui(l) (2.4b)

where b and c are the distances shown in Fig. 1 and the

other factors in (2.4) are explained below. T and R are the

well-known Fresnel’s transmission and reflection coeffi-

cients (for a planar interface) given by

2 R=l– Y

‘=l+Y l+Y
(2.5)

where

{

n (Cos a~ /cos ~, ) , for perpendicular polarization
y=

n- ‘(cos a,/cOs al), for parallel polarization

n = (n z/n 1) = relative refraction index.

The incident angle al and transmitted angle az are related

13

by the Snell’s law

1
sinci2 = ~sincxl . (2.6)

For n <1, a critical incident angle aC exists, where

sinaC=n, ifn<l. (2.7)

If al> aC, az defined in (2.6) becomes complex, and the

simple ray picture shown in Fig. 1 is lost. It is not im-

mediately clear how the “present GO solution must be

modified. Therefore, in this paper, we exclude the case

al> aC when n <1. (Discussion on this case can be found

in [4] and [7].) The factor (DF)Z in (2.4a) is the so-called

“divergence factor” [3] of the transmitted ray pencil at

point 2 in reference to point 1. It is given by

(DF), =
{& {&“ ‘2”8)

Here (R *1, Rzz) are the two principal radii of curvature of

the transmitted wavefront passing through point 1. The

‘sign convention of R *I (or R ~z) is as follows: R *1 is

positive if the transmitted rays in the corresponding nor-

mal section are divergent, and R ~~ is negative if the trans-

mitted rays are convergent. The square roots in (2.8) take

either positive real or negative imaginary value. Thus,

(DF)Z is positive real (no focus between points 1 and 2 on

the transmitted ray), positive imaginary (one focus between

1 and 2), or negative real (two foci between 1 and 2). The

factor (DF)3 in (2.4b) is the divergence factor of the

reflected ray pencil at point 3 in reference to point 1. It is

given by

(DF), =

&&”

(2.9)

The determination of the four principal radii of curvature

(Rzl, Rzz, R3,, R32) is the key to the present problem. In

Section III, we give an explicit, step-by-step description of

their determination.

In summary, for the refraction problem in Fig. 1, the

finql solutions for the fields of the transmitted and re-

flected rays are given in (2.4). This solution is based on

GO. It is valid for high frequencies, and for all cases,

except when total reflection occurs (n< 1 and al > aC).

III. CALCULATION OF CURVATURES OF REFRACTED

WAVEFRONTS

For an arbitrary interface 2 and an arbitrary incident

ray 01 (Fig. 1), the calculation of the four radii of curva-

tures (Rzl, Rzz, RJI, R32) is not a simple task. In this

section, we present a systematic and explicit procedure for

doing this calculation.

A. Coordinate Systems at Point 1

Consider a ray leaving the source at O in the direction

(f3, +), which intersects the surface X described in (2.1) at

point 1. The distance a is determined from the nonlinear

equation

acos6=~(x=”asin6 cos@, y=asinOsin@). (3.1)
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The unit vector in the direction of the incident ray is

21=2sin(?cos ~+~sin6sin@+ i?cost9. (3.2)

The unit normal fi of surface Z at point 1 is

fi=&&~,j+2) (3.3)

where A = +(1+ ~X2-t ~Y2)1/2, and ~X, for example, is the

partial derivative of ~(x, y) with respect to x. By defining A

positive, we have chosen ~ in the forward direction with

respect to the incident ray. Vectors .2, and fi define the

plane of incidence. At point 1, we introduce four orthonor-

rnal base vectors: (i,, j,, 21) for the incident ray 01;

(.iz, j2, 22) for the tran~rnitted ray 12; (.i~, }q, ~~) for the

reflected ray 13; ( ti, 6, N) for the surface X. We choose

jl=j~=j~=t=fix~, (3.4)

which is equal to a unit vector normal to the plane of

incidence. Then it follows

fi=fix~ in=$t*x2n, forn==l ,2,3. (3.5)

The incident, transmitted, and reflected rays are respec-

tively in the directions
.

21 = slsinal + Ncosal (3.6a)
.

2Z = ti sin a2 -t Ncos az (3.6b)
A

.23= iisinal —Ncosal (3.6c)

where

sinaz = n–l sinal, O<a,. a2 < 7r/2. (3.6d)

Note that, because of the particular choice in (3.4), both al

and a2 are always positive, and have values in (0, T/2).

R Curoature Matrix of Surface E

At point 1 on surface 25, the following two vectors lie in

the tangent plane of the surface:

r,x ==i +~-f r,p=j+J,2 (3.7)

where (x, y, z) are evaluated at point 1. With respect to the

base vectors ( rlX, r, ~), the curvature matrix of X is given by

[5]

[
@ ‘IGI–~,F1

f, E1–elFl

A= f@l –glF1 glE1 – flF1 1
(3.8)

where

L=+(I+j~+/~)’/2

E,=]+&z

F]= 1. f,

Gl=l+~2

el = —A–l~TX

fl = – A- ‘f.,

gl = –A-~~.,.

All,(x, y, Z)”S are evaluated at point 1. Now we transfer the

curvature matrix with respect to (rl., rl ~) to that with

respect to (d, d), namely

Qz = A-IQZA (3.9)

where

‘=[~;: ~;l

It maybe shown [5] that a principal radius calculated from

(3.8) or (3.9) has a positive (negative) sign if the normal

section of the surface bends away from (toward) the nor-

mal N. FAor example, if Z is a sphere with radius p and the

normal N points away from the sphere center, we have

QX=QX=P-’l (3,10)

where 1 is the identity matrix. We note that the present

sign convention for the surface curvature is the same as

that used in [2], but opposite to that in [3], [5].

C. Curvature Matrices of Waoefronts

The incident wavefront passing through point 1 is

spherical with a radius a. Thus, its curvature matrix Q,

with respect to base vectors (-i,, $1), or any other orthonor-

mal base vectors, is

Ql = a-ll. (3.11)

The curvature matrices of the transmitted and reflected

wavefronts passing through 1 are expressed with respect to

base vectors (,fz, j2 ), and (f~, jq ), respectively. They are

denoted by Q2 and Qj. The solution of Q2 is found from

the following matrix equation [2]:

n@Q2B2 = BTQ,B, +(77 COS~2 ‘COSLYI)QZ (3.12)

where

The solution of Q~ is found from the following matrix

equation:

B;Q#$ = BfQIB, –2(coscq)Qx (3.13)

where

D. Principal Radii of Curvature of Refracted Waoefrottts

Once matrices Qz and Q, are determined from (3.12)

and (3. 13], they may be diagonalized in a standard manner

to find their eigenvectors (principal directions of the wave-

front) and their eigen.values (principal curvatures) [5]. In

particular, the principal radii of the transmitted wayefront

( R21, R22 ) are the roots of the following quadratic equa-

tion:

1
—–~(trace Q2)+det Q2=0,
R2

(3.14)
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If Qz in (3. 14) is replaced by Q3, the two roots are the radii

(R31, R~z) of the reflected wavefront. .

IV. SPECIAL CASE: SPHERICAL INTERFACE

To illustrate the results obtained in the previous two

sections, let us concentrate on a special case in which the

interface Z is spherical with radius Ip 1, Following our sign

convention, the radius of curvature of X is

(+lpl, if Z is concave when viewed

()= 1 from the source

-IPI> if Z is convex.

(4.1)

Without loss of generality, we assume that the incident ray

from the source at point O is in the direction (8, @= O). The

plane of incidence is then the x –z plane. Making use of the

formulas in Section III, we find that the principal radii of

the transmitted and reflected wavefronts passing through

point 1 are

[
R2, =(ncos*a J :cos*a, +;(ncosa2–cosa J1

–1
(4.2a)

[
R22= :+~(n COSa2– COSa, )

1

–1
(4.2b)

‘3=[%%1-’‘,,=[+-*1-’
(4.3)

‘P

\

Fig. 2. Refraction at a concave spherical dielectric interface of a nor-
mally incident plane wave.

If p >0 (concave dielectric interface), this is possible if

n =( n z /n 1) <1. If p <0 (convex dielectric interface), this is

possible if n >1.

B. Comparison with Snyder and Love’s Result

In a recent article [4], Snyder and Love consider the

problem sketched in Fig. 1 for art incident plane wave

(source distance a + co in Fig. 1). Their final result is not

in complete agreement with ours. To show this disagree-

ment, let us concentrate on a simple case (Fig. 2): a

concave, spherical, dielectric interface is illuminated by an

incident plane wave which is given by

It can be shown that R21 and R31 are the radii of curvature Ei(x, y, z)= 2e–Jk’y.
of the normal sections in the x –z plane (plane of inci-

(4.7)

dence), whereas R22 and R32 are those in the orthogonal The problem is to find the high-frequency solution of the

directions. Since in general R21 # Rzz and R31 # Rqz, the refracted fields along the y-axis. Based on GO, our solution

refracted and reflected pencils are astigmatic. is given in (2.4), (2.5), (2.8), (2.9), and (4.4) with a + co.

A. Normal Incidence
Using the coordinate system in Fig. 2, the tranynitted and

reflected fields are

For al= O, (4.2) and (4.3) become r 1

‘*l=R22=n[:+%T’
“(o’y’o)=ll+(+wd+e-’k’” ‘>0

(4.8a)

and
.[ 1R31=R32= ~–~ ‘l.

a P
(4.4)

Thus, for normal incidence, both refracted pencils have

spherical wavefronts (no longer astigmatic). The relation in

(4.4) may be rearranged to read

n =~+n–l
(4.5)

% a P
.7

which is the well-known lens equation in optics. (See for

example [6, eq. (40-14), p. 678].) Note the corresponding

notations used in [6] and here: n + 1, n’+ n, s + a, s’+

(– Rzl), and R + (– P).) The divergent incident pencil
from a point source is converted into a convergent trans-

mitted pencil in medium 2 when R *1 <O. This occurs when

()*’a> l–n
>0. (4.6)

‘r(03y0)=’[1-(2/Yl/P)‘<Q
(4.8b)

The factors in [ ] in (4.8) are divergence factors. The

intensity or power density of the incident field on the

central ray (along x = z = O) is given by

li=Re{$. (Ei XHi*)}=(nl/120n), W/m*

(4.9)

which is independent of y since the incident field is a plane

wave. The intensity of the refracted field on the central ray
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does vary with y, namely

I’(Y) –

I’

-1 1‘(1:”)2 1+(+)(;) 2’ ‘>0

(4.10a)

( )[r(y) = y-J 2< 1 1
2

I’ l+n l–(21y[/p) ‘
y<(). (4.10b)

At the focal point of the reflected pencil y = – p/2 in

medium 1, the intensity 1’ in (4. 10b) predicted by the

present GO becomes infinite as expected. For the same

problem sketched in Fig. 2, Snyder and Love’s solution is

given in [4, eq. (29–34)]. For the case of normal incidence

(al = O) and central ray (x= z = O), Snyder and Love’s

solution reads

E&(o,y,o)= 2&, p~y>O (4.lla)

l–n ~y
13~L(0, y,0)=,2~eJ ‘ , y<’ (4.llb)

which should be compared with our solution in (4.8). We

note that i) divergence factors (DF)Z and (DF)~ are missing

in (4.11), and ii) the propagation phase factor exp( – jk2 y)

is missing in (4.11a). Thus, we believe that (4.11) is less

accurate. Furthermore, for each incident ray (fixed a,),

Snyder and Love define a “power transmission coefficient

‘SL” by [’l? eq. (W]

()T~L=l_ ~

I’ “
(4.12)

As maybe seen from (4. 10b), the intensity 1’ is, in general,

a function of position (x, y, z), because of the

divergence/convergence of the reflected ray pencil. Then,

T~~ when calculated correctly is also a function of position,

and does not have the usual significance associated with

the “power transmission coefficient.”

V. NUMERICAL RESULTS AND DISCUSSIONS

For the refraction problem sketched in Fig. 1, the final

solution for the transmitted field Ut in medium 2 is given in

(2.4a), when the incident field is given in (2.2). In this

section, we present some numerical results for u i for vari-

ous interfaces and source locations.

We consider three types of interfaces: the spherical
interface described by

(vh)=l-[l-(x’+y ’)/A;]’/2 (5.1)

the paraboloidal interface described by

(z/A, )=(x’+ y’)/2A; (5.2)

and the hyperboloidal interface described by

(z/A, )=*[l+2(x’+ y’)/A;]’/’-+ (5.3)

where A, is the wavelength in medium 1 in which the

source is located. For easy comparison, we have chosen the

above interfaces such that they all have the same curvature

in the axial direction. The source is assumed to be y-

polarized. We calculate the transmitted field in the E-plane

(plane normal to 2) and H-plane (plane normal to ~). In

these two planes, the incident field is assumed to be

{

-k’ dl,~z(r)=~ E-plane

r
(5.4)

jl , H-plane.

Thus, in the E-plane, the E-vector is parallel to the plane of

incidence; whereas in the H-plane, the E-vector is per-

pendicular. The observation point 2 is in medium 2 (Fig. 1)

with distance b - cc (far zone). We calculate the normal-

ized far field defined by

EN= = ==
E-field when n, # n‘

E’(2) E-field when n,= n‘ “
(5.5)

Substitute (2.4a) and (5.4) into (5.5). Under the condition
b+~, we have

EN-: T{=, b+~. (5.6)

Here a is the distance between the source and the interface

along the incident ray, and T is the Fresnel’s transmission

coefficient given in (2.5). The factor ~= is the radius

of the Gaussian curvature. In presenting the numerical

results, we plot EN as a function of 0, where O is the polar

angle of observation point 2 measured from a line parallel

to the z-axis and passing through the source points. The

relative index n = n‘ /n, is always set at 2 (transmission

into a denser medium).

A. Concave Spherical Interface

Figs. 3 and 4 show the E- and H-plane far-field pattern

EN as a function of 6. Note that the field strengths

increase as the source moves closer to the interface (smaller

a) because EN is inversely proportional to a, according to

(5.5). The Gaussian curvature {Rx decreases with a,

but not enough to offset the factor (l/a) in (5.5). For

source 3, which is at the center of the spherical interface,

all of the incident rays are normal to the interface. It can

be shown that R21 = R22 = a. Thus, EN calculated from

(5.5) is equal to T, which is 0.667 for the present case of

n =2. Of particular interest is the H-plane pattern of

source 1 shown in Fig. 4. Note the marked asymmetry in

the far-field pattern which is due to the asymmetry of the

surface with respect to source 1. Fig. 5 shows the variation

of the axial far field when the source is moved along and

parallel to the z-axis. It shows clearly the increase of the

field as the source moves closer to the interface.

B. Concave Hyperboloidal Interface (Fig. 6)

Note that the far-field pattern (due to source 4) has a dip

instead of a peak in the axial direction. This is in the

contrast to the situations in Figs. 3 and 4. There is another

fact worth mentioning. Because of the choice of the same

axial curvature for the above interfaces, the axial field is

the same for both interfaces when the source is at 2, 3, or 4.
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However, for source 1, which is displaced from the symme-

try axis, the normalized axial field EN(O = O) increases
from 0.826 for the spherical surface to 0.954 for the hyper-

boloid.

C. Conoex Interfaces

The H-plane far-field patterns for a convex sphere,

paraboloid and hyperboloid are shown in Fig. 7 for source

locations 5 and 6. The source locations 5 and 6 were

chosen based on (4.6). Source 5 produces a divergent axial

pencil in medium 2, whereas source 6 produces a conver-

gent axial pencil; the behavior in the nonaxial direction is

governed by the type of the interface. Thus, as maybe seen

z’
w

I I
042~m

POLAR ANGLE , 0 (oEG)

Fig. 6. H-plane far-field pattern through a concave hyperboloid.

from Fig. 7, the far field in the axial direction through the

spherical interface has a peak for source 6 and a dip for

source 5. This is also the case for the pqaboloid. However,

this behavior is not observed in the hyperboloidal pattern.

For all the convex interfaces, the variation of EN as a

function of d in (5.5) is predominantly determined by the

radius of the Gaussian curyature, ~=, and to a lesser

extent by T or a.

D. Ray Picture

The H-plane pattern due to source 6 for a convex sphere

is given in Fig. 7. The corresponding ray picture is shown

in Fig. 8. We launch 6 rays at 4° apart in the upper half
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x = FocAL POINT

Fig. 8. Ray picture and trace of foci of the transmitted rays which lie in the x-z plane, for the convex
spherical interface with source at @. The distance from the interface to a cross afong a given ray

represents R ~1

x – z plane (x> O). The transmitted rays are first conver-

gent, and after crossing the caustic surface, become diver-

gent. The incident rays in the upper half x –z plane within

a 20° angle give rise to transmitted rays in the lower x – z

pkme (x <0) within a 13.5° angle. There are two caustic

surfaces associated with the transmitted rays. The intersec-

tions of the caustic surfaces and the x –z plane are indi-

cated by crosses and dots. Similar ray pictures can be

drawn for the other cases also.

VI. CONCLUSION

For the refraction problem sketched in Fig. 1, the final

geometrical-optics solutions for the transmitted field and

the reflected field are given in (2.4). They are applicable

under rather general conditions, namely, the dielectric in-

terface described in (2.1) is arbitrary, and the incident field

in (2.2) from a point source is arbitrary. A major step in

calculating these solutions is the evaluation of the diver-

gence factors in (2.8) and (2.9), which involves the matrix
operation described by (3.12) and (3.13). Strictly speaking,

the present solution is valid in the high-frequency limit
~ + ~; however, practical experience has shown that SOIU-

tions of the present type are reasonably accurate as long as

the radii of curvature of the dielectric interface are in the

order of a wavelength or more.
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